

Calculation of Consumption Guide

Calculations for Mastic / Sealant

- a = Hole Diameter in mm
- b = Depth of Sealant in mm / wet film thickness for spray material (See recommendations)
- c = Pipe or Bunched Cables diameter in mm
- d = Annular space in mm (See recommendations)
- I = Length of square opening / joint
- w = Width of square opening / joint
- h = Cartridge or spray bucket size in ml
- n = Number of holes
- e = Area of hole in mm² = π (a ÷ 2)²
- $f = Area of pipe in mm² = \pi (a ÷ 2)²$
- q = Amount of mastic needed per hole in ml = ((e-f) x b) ÷ 1000

Round Holes

No. of cartridges needed = n x $(\frac{g}{h})$ Area of hole $e = \pi x (a \div 2)^2 \text{ mm}^2$

Area of pipe $f = \pi x (c \div 2)^2 \text{ mm}^2$

Mastic Volume = $g = ((e-f) \times b) \div 1000 \text{ ml}$

Example:

- a = 90 mm
- b = 40 mm
- c = 50 mm
- h = 310 ml
- n = 20
- $e = 3.14 \times 45^2 = 6361.73 \text{ mm}^2$
- $f = 3.14 \times 25^2 = 1963.50 \text{ mm}^2$
- $g = ((6361.73 1963.50) \times 40) \div 1000$
- = 175.92 ml

No. of cartridges = $20 \times (\frac{175.92}{310})$ = 11.35 cartridges

Square Hole

No. of cartridges needed = n x $(\frac{g}{h})$ Area of hole $e = 1 x w mm^2$

Area of pipe $f = \pi x (c \div 2)^2 \text{ mm}^2$

Mastic Volume = $g = ((e-f) \times b) \div 1000 \text{ ml}$

Example:

- I = 90 mm
- w = 100mm
- b = 40 mm
- c = 50mI
- h = 310mI
- n = 20

 $e = 90 \times 100 = 9000 \text{ mm}^2$

 $f = 3.14 \times 25^2 = 1963.50 \text{ mm}^2$

 $g = ((9000 - 1963.50) \times 40) \div 1000$

= 281.46 ml

No. of cartridges = $20 \times (\frac{281.46}{310})$ = 18.1 cartridges

Linear Joints

No. of cartridges / buckets = $(\frac{y}{b})$ Area of Joint = $e = 1 \text{ x w mm}^2$

Mastic Volume = $((e-f) \times b) \div 1000 \text{ ml}$

Example for Mastic/Sealant:

- w = 20mm
- I = 30meters = 30000mm
- b = 10mm
- h = 310mI
- $e = 20 \times 30000 = 60000 \text{mm}^2$
- $g = (60000 \times 10) \div 1000 = 6000 \text{ml}$

No. of cartridges = $\left(\frac{6000}{310}\right)$

= 19.4 cartridges

Example of joint Spray:

w = 100mm, w1 = 125mm(with overspray)

- I = 300 meters = 300000 mm
- b = 1.5 mm
- h = 19 liters = 19000 ml
- e = 125 x 300000 = 37500000 mm2

g = (37500000 x 1.5) \div 1000 = 56250 ml No. of buckets = ($\frac{56250}{19000}$) = 2.96 buckets

Calculations for FireStop Block FBB

a = block length = 230mm = 0.23m

Area to be covered/filled by blocks

I = length of opening

- b = block width = 130mm = 0.13m
- w = width of opening
- = | x b x (1-c/100) = A

Fire rating up to 60 minutes

- t = block thickness = 60mm = 0.06m
- c = %penetrant Area

Fire rating up to 120 minutes

bxt

I = 500 mm = 0.5 m w = 500 mm = 0.5 m c = 30%

No. of blocks required

Area to be covered/filled by blocks = $0.5 \times 0.5 \times (1 - 0.3) = 0.175 \text{m}^2$

No. of blocks required

Fire rating up to 60 minutes

0.175 (0.23×0.06)

12.68

0.175 (0.13×0.06) 22.4

Fire rating up to 120 minutes

Calculations for Compound

I = length of the opening

b = width of the opening

d = depth as per required fire rating

C = Penetrant Area or cross sectional area of services

Y = coverage / yield of 1 bag in Liters

Volume of Compound Required = Volume of opening - Volume of services

Example:

I = 1000mm = 1m

b = 500mm = 0.5m

d = 100mm = 0.1m

C = 20% of opening = I x b x 20% = 1x0.5x0.2 = 0.1

Y = 24 liters per 22 KG bag

Volume of Compound Required = $[(1x0.5x0.1) - (0.1x0.1)] \times 1000$ liters

V = 40 liters

Numbers of bags required =

= 1.67 bags

Calculations for Pillows FiP

Estimation of large and medium size pillows in walls and floors openings of size up to 1 sq. meter.

Width mm		Length mm											
	Size →	Large	Medium	Large	Medium	Large	Medium	Large	Medium	Large	Medium	Large	Medium
	Seal type	100		300		500		700		900		1000	
200	Wall	3	5	7	13	12	22	17	31	21	39	24	47
	Floor	2	3	4	7	6	12	9	17	11	22	12	27
400	Wall	5	9	14	26	24	44	33	61	42	78	47	95
	Floor	3	5	7	15	12	24	17	34	22	43	24	52
600	Wall	7	13	21	39	35	65	49	91	63	117	70	143
	Floor	4	7	11	22	18	36	25	51	33	65	36	79
800	Wall	9	18	28	52	47	87	66	122	84	157	94	192
	Floor	5	10	15	29	24	48	34	67	33	87	48	107
1000	Wall	10	22	35	65	59	109	82	152	105	196	117	217
	Floor	6	12	18	36	30	60	42	84	54	108	60	120

Calculations for Fire Barrier Foam - FBS

Material use as reference value for 40% degree of seal use - number of cartridges for seal thickness 200mm and 100mm for 90 minutes and 30 minutes fire rating respectively

Seal Surface	Volume @ 200mm depth	Cartridge	Volume @ 100mm depth	Cartridge	Core boring	Volume @ 200mm depth	Cartridge	Volume @ 200mm depth	Cartridge
m2	[m3]	180g	[m3]	180g	[mm]	[m3]	180g	[m3]	180g
0.005	0.001	0.92	0.0005	0.48	50	0.0004	0.36	0.0002	0.18
0.01	0.002	1.85	0.001	0.98	60	0.0006	0.52	0.0003	0.26
0.02	0.004	3.69	0.002	1.85	70	0.0008	0.71	0.0004	0.36
0.03	0.006	5.54	0.003	2.77	80	0.001	0.93	0.0005	0.47
0.04	0.008	7.38	0.004	3.69	100	0.0016	1.45	0.0008	0.73
0.048	0.0096	8.92	0.0048	4.46	120	0.0023	2.09	0.0011	1.05
0.0625	-	-	0.0063	5.81	160	0.004	3.71	0.002	1.85
					200	0.0062	5.8	0.0031	2.9

^{*}The above calculations do not consider wastage of material. Please consider an appropriate factor.